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Optimal energy amplification via autoresonance in dissipative systems subjected to separatrix crossings is
discussed through the universal model of a damped driven pendulum. Analytical expressions of the autoreso-
nance responses and forces as well as the associated adiabatic invariants for the phase space regions separated
by the underlying separatrix are derived from the energy-based theory of autoresonance. Additionally, appli-
cations to a single Josephson junction, topological solitons in Frenkel-Kontorova chains, as well as to the
three-wave problem in dissipative media are discussed in detail from the autoresonance analysis.
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I. INTRODUCTION

Autoresonance �AR� induced energy amplification in non-
linear, driven, and deterministic systems occurs when the
system continuously adjusts its amplitude so that its instan-
taneous nonlinear period matches the driving period. AR
phenomena have been well known for about half a century
and they have been observed in particle accelerators �1�,
planetary dynamics �2�, nonlinear oscillators �3�, and atomic
and molecular physics �4�, among many other fields where a
Hamiltonian description is suitable. Regarding dissipative
systems, an energy-based AR �EBAR� theory which explains
in a unified frame many phenomenological and approximate
results arising from a previous adiabatic approach to AR phe-
nomena has been proposed recently �5�. This theory applies
to the general family of systems

ẍ = g�x, f�t�� − d�x, ẋ� + p�x, ẋ�F�t� , �1�

where g�x , f�t��=−�V /�t �V�x , t� being an arbitrary poten-
tial�, −d�x , ẋ� is a general damping force, and p�x , ẋ�F�t� is a
general temporal force. The corresponding equation for the
energy is

Ė = ẋ�− d�x, ẋ� + p�x, ẋ�F�t�� + �V/�t � P�x, ẋ,t� ,

where E�t�� ẋ2 /2+V�x , t� and P�x , ẋ , t� are the energy and
power, respectively. The AR solutions are defined by impos-
ing that the energy variation

�E = �
t1

t2

P�x, ẋ,t�dt

is a maximum �with t1, t2 arbitrary but fixed instants�, which
implies a necessary condition to be fulfilled by the AR solu-
tions and excitations: the Euler equation

�P

�x
=

d

dt
� �P

�ẋ
� . �2�

From Eq. �2� a relationship between x, ẋ, f , and F can be
deduced such that the solutions of the system given by Eqs.
�1� and �2� together provide the AR excitations fAR�t�,
FAR�t�, and the AR solutions xAR�t� �see Ref. �5� for more

details�. In particular, the application of the EBAR theory to
a Duffing equation

ẍ + �0
2�x + bx3� = − �ẋ + F�t�

shows that its AR excitations and solutions only exist if the
relationship �0

2=2�2 /9 is satisfied. This condition on �0 and
� is precisely the same condition for the equation providing
the AR solutions

ẍAR + �0
2�xAR + bxAR

3 � = �ẋAR

�see Ref. �5��, to present both a nontrivial Lie symmetry and
the Painlevé property �6� which indicates that such an equa-
tion is integrable. As is well known, integrability and sepa-
ratrix crossing �SC� are incompatible notions. Since SC is
essential to understand many ubiquitous nonlinear phenom-
ena including chaos �7�, a relevant question naturally arises:
How does AR work when a dissipative system crosses the
separatrix associated with its underlying integrable counter-
part?

In this work, this fundamental problem is studied through
the universal model of a damped driven pendulum

ẍ + �0
2f�t�sin x = − �ẋ + F�t� , �3�

where the as yet undetermined parametric f�t� �8� and exter-
nal F�t� excitations have to be obtained conjointly to yield a
maximal increase of the pendulum’s energy over time. The
functions f�t� and F�t� are k-times piecewise continuously
differentiable. A first observation is that a lack of continuity
of the AR solutions xAR�t� across the separatrix is expected to
arise because the period is infinite on the separatrix and
therefore the requirement of continuous matching between
the instantaneous pendulum period and the driving period is
no longer possible across it.

The paper is organized as follows. AR analysis is applied
to Eq. �3� in Sec. II, including analytical expressions of the
AR excitations and forces. Section III gives the adiabatic
invariants associated with the AR excitations and forces de-
duced in Sec. II. The application of the findings of previous
sections to three physically meaningful situations is dis-
cussed in detail in Sec. IV. Finally, some concluding remarks
are presented in Sec. V.
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II. AUTORESONANCE ANALYSIS

The Euler condition �see Eq. �2��, corresponding to Eq.
�3�, and Eq. �3� together yield the equation governing the AR
excitations and solutions

ẍAR + �0
2fAR�t�sin xAR = �ẋAR +� sin xARdfAR, �4�

FAR�t� = 2�ẋAR +� sin xARdfAR. �5�

To obtain AR solutions �and hence AR excitations, see Eq.
�5��, consider the ansatz xAR�t�=2am��0

2fAR�t�+� ;m�t��,
where am �· ;m� is the elliptic amplitude of parameter m, and
where the functions fAR�t�, m�t� have to be determined for
the ansatz to satisfy Eq. �4�, while � is an arbitrary constant.
This implies

ẋAR�t� = 2 ḟARdn���t�;m� + ṁm−1�1 − m�−1	�1 − m���t�

− E„��t�;m…
dn���t�;m�

+ ṁ�1 − m�−1cn���t�;m�sn���t�;m� ,

where ��t���0
2fAR�t�+�, E�· ;m� is the elliptic integral of

the second kind, and sn �· ;m�, cn �· ;m�, dn �· ;m� are Jaco-
bian elliptic functions of parameter m �9�. Now, one assumes
that the temporal variation of m�t� is sufficiently slow to
allow one to drop the terms proportional to ṁ�t� in the above
expression for ẋAR�t� and consistently obtain m�t�. In such a
case, Eq. �4� reduces to

ẍAR + �0
2e�t/3 sin xAR = �2�/3�ẋAR, �6�

which has the solution

xAR�t� = 2am„�0
2fAR�t� + �;m�t�…

and, hence,

FAR�t� = �10�0
2�2/9�fAR�t�dn„�0

2fAR�t� + �;m�t�…

�see Eq. �5��, with

fAR�t� = e�t/3,

m�t� = 9�0
−2�−2e−�t/3

satisfying the constraint m�0
2fAR=9�−2. Clearly, Eq. �6� is

accurate only for t�	�1 /� since ṁ�t�	��0, while for t

	 one has fAR�t��1. Thus, after using well-known prop-
erties of the functions am �· ;m� and dn �· ;m� �9�, one obtains
the AR solutions and excitations

xAR�t � 	� = 2�0
2e�t/3 + 2� ,

FAR�t � 	� = �10�0
2�2/9�e�t/3, �7�

which are expected to be valid after SC �see theorem 2 be-
low�. The relationship fAR�t
	��1 suggests taking f�t�=1
in Eq. �3� to study AR before SC �see theorem 2 below�.
With this assumption, Eq. �4� reduces to

ẍAR + �0
2 sin xAR = �ẋAR, �8�

for t
	 instead of Eq. �6�. Notice that both Eq. �6� and Eq.
�8� exhibit two symmetries:

Ŝ1:x → − x ,

Ŝ2:t → − t, � → − �

�10�. Symmetry Ŝ2 implies that solutions of a damped pen-
dulum are those of Eq. �8� under time reversal. Although no
exact analytical solutions of Eq. �8� are known, the following
result provides useful approximate solutions.

Theorem 1. For initial conditions sufficiently close to �but
different from� the stable equilibrium of the integrable pen-
dulum ��=0�, Eq. �8� has the solutions

xAR�t 
 	� = Ae�t/2 sin�
�0
2 − �2/4t + �0� + O�A3� , �9�

and hence the AR excitations are FAR�t
	�=2�ẋAR�t
	�
�see Eq. �5��, where A, �0 are arbitrary constants and �0
�� /2.

Proof. Using the ansatz xAR=Ae�t sin��t+�0� together
with the relationship sin�z sin ��=2�k=0


 J2k+1�z�sin��2k
+1��� and the property Jk�z→0���z /2�k /��k+1�, k�−1,
−2,−3, . . ., where Jk are Bessel functions and ��z� is the
gamma function, solution �9� is straightforwardly obtained.

The physical meaning of the time constant �−1 is now
apparent: It represents the time scale in which the pendulum
escapes in AR from the initial well, i.e., until an SC occurs.
The following result provides an estimate of the escape time
	.

Theorem 2. The escape time 	 from the initial well while
the pendulum remains in AR scales as 	��−1.

Proof. Equation �8� can be recast in the form ĖAR=�ẋAR
2 ,

where EAR= ẋAR
2 /2−�0

2 cos xAR is the energy. After integrat-
ing this equation till the escape time 	 and applying the first
mean value theorem, one straightforwardly obtains 	
= ��EAR / ẋAR

2 �t*���−1, 0� t*�	, where �EAR / ẋAR
2 �t*� de-

pends on the initial conditions and �0.
Numerical experiments confirmed accurately the scaling

	��−1 �see Fig. 1� and the above approximate AR solutions
�see Figs. 2 and 3�. The fact that Eq. �6� solely reduces to Eq.
�8� for t
	 if �→3� /2, i.e., after rescaling the escape time
	, indicates the breakdown of the AR solutions due to SC. In
other words, there is no smooth way to go from libration to
full rotation while the pendulum remains in AR.

III. ADIABATIC INVARIANTS

The EBAR theory predicted the existence of an adiabatic
invariant associated with the AR solutions of the aforemen-
tioned Duffing equation �5�. In the present case, one could
expect to find different adiabatic invariants respectively as-
sociated with the two AR solutions �7� and �9�. To this end,
note that Eq. �8� can be derived from the Lagrangian

L = e−�t�ẋ2/2 + �0
2 cos x�

whose associated Hamiltonian is
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H = p2e�t/2 − �0
2e−�t cos x, p � ẋ .

The form of this Hamiltonian suggests the following simpli-
fying canonical transformation:

X = xe−�t/2, P = pe�t/2,

which comes from the generating function

F2�x,P,t� = xPe−�t/2

�11�. The new Hamiltonian therefore reads

K�X,P,t� = P2/2 − �0
2e−�t cos�Xe�t/2� + �XP/2.

Thus, one obtains that the AR solutions are associated �in
terms of the old canonical variables� with the adiabatic in-
variant

I = p2/2 − �0
2 cos x + �xp/2 �10�

long before SC, i.e., dK /dt�0 when t�	 �see Fig. 2�. Note
that this adiabatic invariant reduces to energy provided that
dissipation is sufficiently small. Similarly, Eq. �6� can be
derived from the Lagrangian

L� = e−2�t/3�ẋ2/2 + �0
2e�t/3 cos x�

with

H� = p2e2�t/3/2 − �0
2e−�t/3 cos x

being the associated Hamiltonian. Now, the generating func-
tion

F2��x,P,t� = xPe−�t/3

yields the canonical transformation

X = xe−�t/3, P = pe�t/3.

Therefore, the new Hamiltonian reads

K��X,P,t� = P2/2 − �0
2e−�t/3 cos�Xe�t/3� + �XP/3.

When t�	, one sees that K� is almost conserved �dK� /dt
�0�, i.e., the AR solutions are associated �in terms of the old
canonical variables� with the adiabatic invariant

I� = p2e2�t/3/2 + �xp/3 �11�

long after SC. Since I� becomes larger and larger as K� is
better and better conserved, one expects

I�e−2�t/3 � p2/2 + 4�2�0
4/9 �12�

according to the above prediction for xAR�t�	� �see Eq. �7��.
Figure 3 shows how numerical simulations accurately con-
firmed the prediction �12�. After SC, the branch of the pa-
rabola with p�0 �p
0� is associated with clockwise �coun-
terclockwise� AR rotations. Whether the AR rotations have
one or the other sense depends upon the initial conditions, as
can be appreciated in Fig. 4, where it is also apparent that the
escape time strongly depends upon those conditions for fixed
� and �0.

IV. APPLICATIONS

The results of the previous sections can be directly ap-
plied to a mechanical pendulum. The present section dis-
cusses their detailed application to three additional, physi-

FIG. 3. �Color online� Adiabatic invariant associated with AR
solutions outside the underlying separatrix I� �see Eqs. �6� and �11��
vs momentum p for three values of the dissipation coefficient: �
=0.05 �circles�, �=0.22 �squares�, and �=0.4 �triangles�. The black
line represents the prediction �12� obtained from the AR solutions
�7�. Here �0=1.

FIG. 1. �Color online� Numerically obtained escape time 	 vs
dissipation coefficient � �dots� and analytical fit 	=10.8�−1 �see
theorem 2, solid line� for a pendulum in AR �see Eq. �8�� with �0

=1 and fixed initial conditions. The two insets show the orbits in the
phase space for �=0.02 and �=0.45, respectively. Note that the
scaling �−1 is valid over three orders of magnitude in 	.

FIG. 2. �Color online� Exact AR solutions �see Eq. �8�, thick
line�, approximate AR solutions �see Eq. �9�, thin line�, and adia-
batic invariant I �see Eq. �10�, medium line� vs time for �=0.2 �top
panel� and �=0.45. Here, 	 denotes the instant at which the pendu-
lum escapes from the initial well, and �0=1.
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cally meaningful contexts: The three-wave problem in
dissipative media, the resistively and capacitively shunted
junction model, and the Frenkel-Kontorova model.

A. Three-wave problem in dissipative media

The three-wave interaction plays a fundamental role in
physics because it represents lowest-order �in terms of wave
amplitudes� nonlinear effects in systems approximately de-
scribed by a linear superposition of discrete waves. In par-
ticular, the resonant nonlinear interaction of three collinear
plane waves in a dissipative medium �12� is described by the
real amplitude �aj , j=0,1 ,2� equations �with �t�� /�t, etc.�

��t + v0�x + �0�a0 = − �0a1a2,

��t + v1�x + �1�a1 = �1a0a2,

��t + v2�x + �2�a2 = − �2a0a1, �13�

where x is the direction of propagation, and v j, � j, and � j
�0 are the velocities, damping rates, and coupling param-
eters, respectively. Consider, in the following, solutions of
Eq. �13� in the form of traveling waves aj =aj���, �=x−ct,
with the velocity c undetermined. Upon substituting into Eq.
�13�, one arrives at

��� + �̃0�a0 = − �0a1a2, �14a�

��� + �̃1�a1 = �1a0a2, �14b�

��� + �̃2�a2 = − �2a0a1, �14c�

where � j =� j / �v j −c�, �̃ j =� j / �v j −c�. From Eqs. �14a� and

�14b� with the constraint �̃0= �̃1��*, one obtains the equa-
tion a0

2 /�0+a1
2 /�1=�2 exp�−2�*��, � being an arbitrary con-

stant. This equation is satisfied by

a0 = �
�0e−�*� cos��/2� ,

a1 = �
�1e−�*� sin��/2� , �15�

where �=���� remains to be determined. Upon substituting
Eq. �15� into Eq. �14a�, one gets

a2 = �2
�0�1�−1��� . �16�

Finally, after substituting Eqs. �15� and �16� into Eq. �14c�,
one arrives at

���� + �̃2��� + �2e−2�*� sin � = 0, �17�

with �2��2�0�1�2. Now, when the constraints 4�*= �̃2, v j

�c are satisfied, the aforementioned symmetry Ŝ2 implies
that the solutions of Eq. �17� are those of the AR Eq. �6�
under time reversal with the identifications t→�,

�→3�̃2 /2, �0→�. In particular, this yields

a0��� � �
�0e−�*� cos��2e−2�*� + �� ,

a1��� � �
�1e−�*� sin��2e−2�*� + �� ,

a2��� � − 2�2�*��0�1�−1/2e−2�*� �18�

for ��1 /�* according to Eq. �7�. Physically, this means that
the amplitudes aj are subjected to exponential decays for �
�1 /�*. In particular, one has the scalings a0���1 /�*�
�e−�*�, a1���1 /�*��e−3�*�, a2���1 /�*��e−2�*� for �
=0. Note that the aforementioned constraints permit one to
obtain the velocity c= �v0−v1�0 /�1��1−�0 /�1�−1 and are
satisfied over regions of finite measure in the parameter
space 	� j ,v j
, the case v0=v2, �2=4�0, 1�v0 /v1��0 /�1
being an example.

B. Resistively and capacitively shunted junction

Consider now the application of the above AR analysis to
the following resistively and capacitively shunted junction
�RCSJ� model �13�

�C

2e

d2�

dt2 +
�

2eR

d�

dt
+ Ic sin � = IAR�t� , �19�

where � is the phase difference of the quantum mechanical
wave functions of the superconductors defining the Joseph-
son junction, R is the model shunting resistance, C is the
magnitude of the junction capacitance, and Ic is the critical
current, while IAR�t� represents the as yet undetermined AR
current flowing through the junction. After rescaling time,
Eq. �19� can be recast into the form

d2�

dt�2 +
��̃0

2eR
Ic

d�

dt�
+ Ic sin � = IAR�t�� , �20�

where t�� �̃0t /
Ic, �̃0�
2eIc

�C being the Josephson plasma
frequency. Now, a comparison between Eqs. �20� and �3�
with f�t�=1 indicates that the AR solutions of the RCSJ
model before SC are governed by the equation

�10 �5 0 5 10
�6

�4

�2

0

2

4

6
�c�

�20�10 0 10 20
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�2 �1 0 1 2
�1

�0.5

0

0.5

1
�a�

�4 �2 0 2 4
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�2

0

2

4
�b�

FIG. 4. �Color online� Phase space �x-p� AR trajectories �see
Eq. �8�� starting from 3�103 initial conditions uniformly distrib-
uted on an ellipse centered at the origin at successive instants: t
=0 �a�, t=1.2 /� �b�, t=1.6 /� �c�, and t=2.3 /� �d�. Here, �=0.4,
�0=1.
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d2�

dt�2 + Ic sin � =
��̃0

2eR
Ic

d�

dt�
. �21�

In particular, theorem 1 gives us �in terms of the original
time variable� the following AR solutions of Eq. �21�:

�AR�t 
 	*� � A exp� t

2RC
�sin��*t + �0� �22�

and hence the AR currents are

IAR�t 
 	*� �
A�

eR
exp� t

2RC
�sin��*t + �0 + �� , �23�

where A��1�, �0 are arbitrary constants, �*�
�̃0
2− 1

2R2C2 ,
��arctan�
4R2C2�̃0

2−2�, while the escape time scales as
	*�RC, and �̃0�

1

2RC

. Note that this relationship between
the Josephson plasma frequency and the time constant RC
�see theorem 2� represents a necessary condition for the
phase difference of the quantum-mechanical wave functions
to maximally increase along time according to Eq. �22� from
an initial state very close to equilibrium when the current
flowing through the junction is given by Eq. �23�. The author
is confident that Eqs. �22� and �23� can be successfully tested
with an experiment involving a single Josephson junction. In
this regard, a linear approximation for exp� t

2RC � could be
used since the escape time scales as 	*�RC.

C. Topological solitons in Frenkel-Kontorova chains

Consider now the problem of optimally accelerating a to-
pological soliton, which is initially pinned to a certain pen-
dulum, in a damped, driven Frenkel-Kontorova �FK� chain
by AR external forces. This represents an ubiquitous problem
since the FK model provides a fairly accurate description of
diverse physical and biological phenomena and systems, in-
cluding ladder networks of discrete Josephson junctions,
charge density wave conductors, and DNA dynamics, to
quote just a few �14�. For the sake of concreteness, the ap-
plication of the EBAR theory is discussed in the following
case:

üj +
K

2�
sin�2�uj� = − �u̇j + uj+1 − 2uj + uj−1 − FAR�t�� ,

�24�

where uj is the phase of the jth pendulum, u̇j �duj /dt�, etc.,
K measures the strength of the substrate potential, � is the
damping coefficient, and FAR�t�� is the as yet undetermined
AR force �where the minus sign is introduced for conve-
nience�. Also, a finite chain of N particles with the following
boundary condition: uj+N=uj +N+1 is assumed to keep the
analysis close to experimental realization �e.g., a circular ar-
ray of Josephson junctions�. As is well known, a collective
coordinate formalism �CCF� �15� permits one to describe the
motion of the soliton center of mass X�t�� by means of an
effective ODE, which is a perturbed pendulum for the FK
model �16�. Thus, the application of CCF to Eq. �24� by
assuming a sine-Gordon profile for the �discrete� soliton, uj
= j� �2 /��tan−1	exp�j−X�t��� / l0
, yields the perturbed pen-
dulum equation

d2x

dt2 + sin x = − �
dx

dt
+ FAR�t� , �25�

where x�2�X, t��PNt�, ����PN
−1 , where �PN and l0 are

the Peierls-Nabarro frequency and the soliton width, respec-
tively 	�PN

2 / �2��= ��3+2�5l0
2� / �6l0 sinh��2l0��
. Now, a

comparison between Eqs. �25� and �3� with f�t�=1 indicates
that the AR solutions of the effective ODE describing the
motion of the soliton center of mass before SC are governed
by the equation

d2x

dt2 + sin x = �
dx

dt
. �26�

In particular, theorem 1 gives us �in terms of the original
space-time variables� the following AR solutions of Eq. �26�:

XAR�t� 
 	**� �
A

2�
exp��t�

2
�sin��**t� + �0� , �27�

and hence the AR forces are

FAR�t� 
 	**� �
2�A

�PN
exp��t�

2
�sin��**t� + �0 + �� ,

�28�

where A��1�, �0 are arbitrary constants, �**�
�PN
2 − �2

4 ,
��arctan�
4�PN

2 /�2−1�, while the escape time scales as
	**��−1 and �PN�� /2. This relationship between the
Peierls-Nabarro frequency and the time constant �−1 �see
theorem 2� represents a necessary condition for the topologi-
cal soliton to optimally accelerate along time according to
Eq. �27� from an initial pinned state very close to equilibrium
when the external force acting on the FK chain is given by
Eq. �28�. Equations �27� and �28� can be successfully tested
with an experiment involving a circular array of Josephson
junctions, where a linear approximation for exp��t� /2� could
be used since the escape time scales as 	**��−1.

V. CONCLUSION

Optimal energy amplification via autoresonance in dissi-
pative systems subjected to separatrix crossings has been dis-
cussed in the framework of the energy-based autoresonance
theory through the universal model of a damped driven pen-
dulum. Analytical expressions for autoresonance solutions
and forces as well as for the associated adiabatic invariants
inside and outside the underlying separatrix were deduced.
Numerical studies supplement the autoresonance analysis
and confirm the conclusions. Additionally, the autoresonance
analysis has been applied to three relevant physical contexts:
the three-wave problem in dissipative media, the resistively
and capacitively shunted junction model, and the Frenkel-
Kontorova model, where analytical predictions were deduced
from the autoresonance analysis. These predictions can be
tested experimentally, and the author hopes that this work
will motivate several novel experiments. It should be
stressed that the present results can be applied to virtually
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any physical scenario where a damped driven pendulum
could appear as a suitable �effective or exact� dynamic
model, the case of cold atoms in optical potentials, for in-
stance, provides an additional example for future research.
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AR excitation FAR�2�ẋAR=0 “trivially” have the same in-

stantaneous period for all t. However, physically it is not an
AR solution since the energy does not increase over time.

�11� H. Goldstein, Classical Mechanics �Addison-Wesley, Reading,
1980�.

�12� K. Papadopoulos, K. Ko, and V. Tripathi, Phys. Rev. Lett. 51,
463 �1983�; R. H. Enns and S. S. Rangnekar, Phys. Status
Solidi B 94, 9 �1979�.

�13� A. Barone and Paternó, Physics and Applications of the Jo-
sephson Effect �Wiley, New York, 1982�.

�14� For extensive review of applications of the FK model, see L.
Floría and J. J. Mazo, Adv. Phys. 45, 505 �1996�; and O. M.
Braun and Y. S. Kivshar, Phys. Rep. 306, 1 �1998�, and refer-
ences therein.

�15� C. Willis, M. El-Batanouny, and P. Stancioff, Phys. Rev. B 33,
1904 �1986�; M. K. Sayadi and J. Pouget, Physica D 55, 259
�1992�.

�16� P. J. Martínez and R. Chacón, Phys. Rev. Lett. 93, 237006
�2004�; Phys. Rev. Lett. 96, 059903�E� �2006�.

RICARDO CHACÓN PHYSICAL REVIEW E 78, 066608 �2008�

066608-6


